\qquad
Name:
Date:
Period:
Seat \#:
Charles' Law states the volume of a gas varies directly with the Kelvin temperature, assuming the pressure is constant. We use the following formulas:

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} ; \quad K={ }^{\circ} \mathrm{C}+273
$$

Solve the following problems (assuming constant pressure). Assume all number are 3 significant figures.
A sample of nitrogen occupies a volume of 250 mL at $25^{\circ} \mathrm{C}$. What volume will it occupy at $95^{\circ} \mathrm{C} ? 309 \mathrm{ml}$

Oxygen gas is at a temperature of $40^{\circ} \mathrm{C}$ when it occupies a volume of 2.30 Liters. To what temperature should it be raised to occupy a volume of 6.50 Liters? $885 \mathrm{~K} / 612^{\circ} \mathrm{C}$

Hydrogen gas was cooled from $150^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Its new volume is 75.0 mL . What was its original volume? 98.2 mL

Chlorine gas occupies a volume of 25.0 mL at 300 K . What volume will it occupy at $600 \mathrm{~K} ? 50.0 \mathrm{~mL}$

A sample of neon gas at $50^{\circ} \mathrm{C}$ and a volume of 2.50 Liters is cooled to $25^{\circ} \mathrm{C}$. What is the new volume?
2.31 L

